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Abstract

The objective for this study was to investigate whether the postural control adaptation
during galvanic stimulation of the vestibular nerve were similar to that found during vibration
stimulation to the calf muscles. A method for adaptation analysis was used to anayze the
evoked changes of posture, stimulus responses and the motion dynamics.

The adaptive adjustments of postural control were similar during galvanic and vibratory
stimulation, which suggests that the adaptation operate in the same way independent of the
receptor systems affected by the disturbance. There was however a difference in the dynamic
feedback properties of the measured responses.

Introduction

If arepeated disturbance of postural control becomes more intense, it usually initiates an
adaptive process to improve the control performance (1-3). However, it is unknown whether
this adaptive processis similar independently on receptor system affected by the disturbance.
The adaptive adjustments were therefore analyzed during posturography with perturbations
induced by disturbances of vestibular and proprioceptive information.

The adaptive adjustmentsin postural control were quantified by a method approach
describing postural control as a dynamic feedback control. The method provides a
mathematical model of the relationship between induced disturbances and counteractive body
sway responses (4).

The aim of this study was to investigate if the adaptive processes and motion response
dynamics were similar whether perturbed by galvanic or vibratory stimulation.

Methods

Galvanic stimulation of the vestibular nerve was performed on 12 test subjects (6 men, 6
women; mean age 41 years, range 23-56 years). Vibratory stimulation was performed on 10
healthy subjects (6 men, 4 women; mean age 37.5 years, range 29-56 years).

The galvanic vestibular stimulation was applied as bipolar and binaural square pulses of 1
mA amplitude with pseudorandomly shifting polarity. The pulses were delivered by a
constant current generator through two electrodes placed on each of the mastoids. Vibratory
stimulation was applied to the gastrocnemius muscles of both legs. The vibratory amplitude
was 1.0-mm and the frequency 85 Hz. Forces and torques actuated by the feet were recorded
by aforce platform and data were sampled at 10 Hz.

The subjects were told to stand erect but relaxed and feet at an angle of about 30 degrees.
Spontaneous sway was recorded for 30 seconds of quiet stance, after which the vibrators for
200 seconds were turned on and off according to a pseudorandom binary sequence (PRBS)
containing pulses varied between 0.8 to 6.4 seconds. The experiments were conducted both
with eyes closed and open.

Analysis

The measured lateral torque during galvanic stimulation and anteroposterior torque during
vibratory stimulation was analyzed with a method considering the adaptation of postural
control. The method aims to describe the adaptation of the slow posture motion as well as the
adjustments of the stimulation responses. This information is used to estimate a time-invariant
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feedback control model that mathematically describes the relationship between the
stimulation and measured body sway responses (4).

Posture and stimulus adaptation

Two exponential functions were used to describe the amplitude and time constants for the
adaptive changes. The “Stimulus adaptation” function describes the adaptive changes in
stimulus-response amplitude over time and the “Posture adaptation” describes the slow
adaptive changes of posture.

Feedback model dynamics and motion complexity

A feedback model, optimized to describe of the stimulation — body sway response
relationship, evaluated the complexity of the body sway responses and latency between the
perturbations and the motion responses. The body motion dynamics were also evaluated from
the feedback model in terms of three dynamical parameters: swiftness, stiffness and damping.

Modeling of adaptation

Time-series analysis using the maximum-likelihood method was used to fit an input-output
model of the stimulus-response data obtained in experiments. Model validation was made
usng ANOVA-based residua analysis a a significant level of p<0.05. Generalized
autoregressive heteroscedastic (GARCH) modeling was applied to fit exponentials describing
the adaptive changes of variance in the course of the experiment.

Statistical analysis

The differences between the galvanic and vibration tests were analyzed with Mann-
Whitney non-parametric test and the difference between tests performed with eyes closed-
eyes open was analyzed with Wilcoxon non-parametric test.

Results
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Figure 1. Measured torque (thin dotted line) in the lateral and anteroposterior direction from experiments
with galvanic and vibratory stimulation respectively. Positive values correspond in the top figure to a rightward
position whereas positive values in the bottom figure correspond to a backward position. The top curve shows
the stimulation, which is arbitrarily scaled and moved. The model simulation values are marked with athick line.
Note the similarities between body sway induced by the galvanic and vibratory stimulation and the high
accuracy of the model simulation when measured body sway is described with the analysis method.

Posture and stimulus adaptation

A. Posture adaptation ~ Amplitude A; [Nm]  Time constantt, [s] Adj. complexity (2,1,0) [%]

Galvanic Closed 49.4 (65.5) 13.6 (16.6) (50, 33, 17)
" Open 125.5 (253.4) 20.0 (21.7) (58, 25, 17)
Vibration Closed 24.6 (20.6) 5.8 (6.6) (40, 50, 10)

Open 94.3 (124.4) 11.5(11.3) (70, 20, 10)

B. Stimulus adaptation ~ Amplitude A; [Nm]  Time constantt; [s] Adj. complexity (2,1,0) [%]

Galvanic Closed 99.9 (194.4) 15.8 (22.4) (50, 50, 0)
" Open 60.6 (183.3) 13.3 (24.3) (50, 50, 0)
Vibration  Closed 37.4 (47.0) 3.8 (2.4) (90, 10, 0)

Open 30.3 (47.0) 7.5 (14.3) (60, 40, 0)

Table 1: Mean and standard deviation (SD) for the absolute amplitude and time parameter values across
subjects obtained from the “ Posture adaptation” (A) and “ Stimulus adaptation” (B). The adjustment complexity
shows the rate of (second, first, zero)-order adjustment pattern i.e. if both, one or none of the function terms are
of considerable influence when describing the adjustment pattern.

The variations in amplitudes and in the adjustment complexity indicate a large inter-
individual variation in the way the adaptive adjustments was done. However, the time
constants were within the same range and both posture and stimulation responses were usually
adjusted. There were no significant differences in amplitude and time constant parameters in
the “Posture adaptation” and “Stimulus adaptation” functions between any of the test
conditions.

Feedback model dynamics and motion complexity
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Figure 1. Mean and standard deviation values for the dynamical parameters swiftness, stiffness and damping.
One asterisk denote a significant difference (p<0.05), two asterisks a difference (p<0.01) and three asterisks a
difference (p<0.001).



The dynamical parameter values show that the body sway responses were somewhat more
rapid to the perturbation during galvanic stimulation compared to during vibratory
stimulation, but the responses to the induced body deviation were not as strong. The responses
to the galvanic stimulation were less affected by visual input compared to during vibratory
stimulation.

Modeling of adaptation

Significant differences were found between variance properties of eyes-closed and eyes-
open conditions, respectively. The test subjects consistently exhibited longer GARCH
correlation time for eyes closed as compared to eyes-open condition for all stimulus
conditions. With one exception only among the test subjects, alow-order GARCH model
(n=1-3) was sufficient for accurate modeling of volatility behavior in response to changein
stimulus condition.

Discussion

This study demonstrated that the adaptation of postural control induced similar adjustment
patterns both during galvanic and vibratory stimulation irrespective of whether the motion
responses were induced in lateral or anteroposterior direction. These body sway adjustments
could be described by a method, which incorporated the adaptive adjustments both of posture
and the feedback dynamics of postural control.

The adaptive responses induced by the repetitive galvanic or vibratory stimulation
contained at least two separate processes (4). One process can be seen in the progressive
reduction of body sway during the stimulation. An additional slower simultaneous adaptive
process can be seen in the postural displacement. There was a variation in the way the
adjustments were done, but there was aways an adaptive adjustment in the stimulation
response and mostly in the posture responses as well.

However, the dynamical properties were found to be different between gavanic and
vibratory stimulation, reflected by atered response latencies and atered dynamical properties.
Some of these results might be explained by the difference in lateral and anteroposterior
biomechanical constraints. Binaural galvanic stimulation with a 1-mA current might also
affect postural control less than high intensity vibration does.

The GARCH correlation time was longer with eyes closed as compared to with eyes open
for all stimulus conditions. This might be an indication for that the capacity of adaptation to
stimulus or perturbation is lower with closed eyes.
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